OVID MEDLINE

1. Create an Ovid MEDLINE search on your clinical topic.

2. Click on the Additional Limits button, located at the bottom of the green Limits box.

3. Use the Clinical Queries limit to easily restrict your search to the best evidence in the literature.

MEDLINE Clinical Queries- These filters, based on the work of R. Brian Haynes MD, PhD et al. of the Health Information Research Unit (HIRU) at McMaster University, are intended for clinicians. A detailed explanation of the strategies behind these limits can be found at http://hiru.mcmaster.ca/hiru/HIRU_Hedges_home.aspx

- Nine MEDLINE Clinical Queries categories are provided:
 - Therapy
 - Diagnosis
 - Prognosis
 - Reviews
 - Clinical prediction guidelines
 - Qualitative studies
 - Etiology
 - Costs
 - Economics

- You can select the emphasis desired:
 - Sensitive (i.e. most relevant articles but probably some less relevant ones)
 - Specific (i.e. mostly relevant articles but probably missing a few)
 - Optimized (i.e. the combination of terms that optimizes the trade-off between sensitivity and specificity)

<table>
<thead>
<tr>
<th>Select</th>
<th>f</th>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1</td>
<td>"Quality of Life"</td>
<td>6776</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Multiple Sclerosis</td>
<td>2837</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>1 and 1</td>
<td>471</td>
</tr>
</tbody>
</table>
CINAHL EBSCO
1. Type search terms into the CINAHL EBSCO search query box, using terms from your clinical question.

2. In the “Limit your results,” click an option next to “Clinical Queries”, then click on the Search button. – Five CINAHL Clinical Queries categories are also provided:
 - etiology
 - prognosis
 - qualitative
 - reviews
 - treatment

– You can select the emphasis desired:
 - Sensitive (i.e. most relevant articles but probably some less relevant ones)
 - Specific (i.e. mostly relevant articles but probably missing a few)
 - Optimized (i.e. the combination of terms that optimizes the trade-off between sensitivity and specificity)